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One-dimensional problems of  the propagation and evolution of  waves in dispersive media have been studied in detail 
in [1-3]. Similar problems in the two-dimensional formulation have been studied to a considerably lesser extent [4, 5], due 
to the considerable difficulties involved. In [4] the stability of two-dimensional solutions was studied analytically for the 
case when there was amplitude modulation. The stationary two-dimensional problem of the flow round a thin body in a 
dispersive medium when the dispersion and nonlinear effects were small was solved analytically in [5]. 

To consider two-dimensional wave processes in a dispersive medium without assuming the nonlinear and dispersive 
effect to be small we chose the simplest model, namely, the flow of  a supersonic collision-free nonisothermal plasma around 
a conducting infinite cylinder. It is well known that in such a plasma iono-sonic waves can propagate, the velocity of  which 
depends on the wavelength (in other words, a plasma with T e >> T i is a dispersive medium for iono-sonic waves). 

Ion-acoustic waves in a nonisothermal plasma without a magnetic field for amplitudes less than the critical values [ 1] 
can be described by the following hydrodynamic equations: 

On~ -1 div (n~u) = 0, (1) 
ot 

au e t ~m i Au, 0-i + (uv) u = - -  ~(. VqD - ~,~,,~ VP~ + - -  

A ~  ~ 4Y~e(ne-- hi), Pi = niTi, ne = n o e x p ( e ~ / T , ) ,  

where Ui, mi, hi, T i are the velocity, mass, density, and temperature of  the ions, n e and T e are the density temperature of  
the electrons, ~ is the electric potential, T e >> T i, and v is the viscosity. When there is no viscosity the dispersion oscilla- 
tions will eventually fill the more and more expanding region in front of  the body. The introduction of  viscosity enables 
one to limit this region. We will solve the problem in polar coordinates (r, 0) in the region Ro ~ r ~ Rx, 0o ~ 0 ~ z~. 
As the initial data over the whole region, in addition to the surface of  the cylinder, we will specify the parameters of  the 
uniform leading flow 

n~(r~ 0) = no, u(r, 0) = u0 = const, ~(r, 0 ) = 0 r  (2) 

where n 0, u 0 are the values of  the density and velocity of  the plasma flow at infinity, which is assumed to be supersonic, 
i.e., u0 > e8 = (T,/rn~)I/~ �9 On the surface of  the cylinder we will specify the condition 

cp(Ro, t) = % = eonst. (3) 

The external boundary of  the region r = R 1 will be assumed to be fairly far from the body, so that 

~(R1, t) = 0. (4) 

The boundary conditions for the hydrodynamic functions are as foUows: 

u t ) =  0, u ( n ,  t) u0, , ,(R,,  t ) =  (5) 

The values of  the potential r on the body, and also the electron and ion temperatures T e and T i will be assumed to be 
certain constants. Note that in the experiment the potential on the body can be varied, while the constancy of  the tempera- 
tures in problems of  ion-acoustic oscillations is a normal assumption. Hence, Eqs. (1) with conditions (2) and (3)-(5) 
formulate the problem mathematically. 

In this problem there are three spatial scales: the dimensions of  the body, the electron Debye radius rDe = 
(Te/4znoe~)'/2 (characterizing the scale of  the dispersion oscillations), and the ion Debye radius :rDt = (TJ4anoe~)l/~ 

(characterizing the effect of  the charge of  the body). It is convenient to choose the radius of  the cylinder R o around which 
the flow occurs as the fundamental spatial scale. We will choose as the characteristic values of  the velocity, density, and 
potential, the velocity of  ion sound c~ ----- (T~/rni) ~/~ , n o , and Te/e respectively. Then, the system of equations (1) in 
dimensionless variables and in polar coordinates (r, 0) can be written in the form 
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on On , O n  (ou  ~ o r ) n u  O, (6) 
o'-~ + U-aT + "7" T g  + n ~Tr + --7- Tg  + - 7  = 

#-"t"]'u"~'r "-} r O0 r -}-'~r "~- n Or n k  Or 2"-}- r Or y "~ r2 a02 r 2 - - . '  

~, Ov v Ov uv t oq~ . T O n  "~ ( 0 %  t ov v , o %  2 ou '~ 
. . . .  Ot --l- tt "~r 27 "7" ' -~  -'}- -7" "}- - 7 " ~  q- "nT"r " ~  " ~  \ Or ~ "}- r Or ~ -}- r2 002 q" - '~  "O'O ) '  

[~ -'7"~7"r r '~7 q - ' 7 0 - ' ~ J  = e x p ( ~ p ) - n '  

where u is the radial component of  the velocity, v is the azimuthal component of  the velocity, [~ = (rDJRo) ~ , and T = T i T .  
The system of  equations (6) was solved numerically by the method of  fractional steps. All terms of  the transfer were 
approximated taking into account the direction of  the velocity; the difference scheme was monotonic and conditionally 
stable. The property of  monotonicity in this case is very important since if this is not satisfied "numerical" dispersion can 
distort the physical dispersion. Poisson's equation for the potential was solved by the quasi-linearizatJon method with 
subsequent iterations using the upper-relaxation algorithm. 

We will consider the results of  the calculations in the whole region /~o ~ r ~.~ 3RoI 0 ~ 0 ~ a(00 = 0) when there 
is no viscosity (v = 0). The velocity of  the leading flow is chosen to be u o = I, 2, and the dispersion parameter ~ = 0.09, 
the ratio of  the ion and electron temperatures T = 0,1, and the potential of  the charged body ~0 o = 0.5. The choice of  the 
complete region 0 ~< 0 ~< ~r enables us to investigate not only the structure of  the shockwave in front of  the body, but also 
the rarefied trail behind it. According to the calculations, a condensation region with maximum densiW n,,ax ~ t8,5 n0j 
is formed in front of  the body, while behind the body there is an extremely rarefied trail with nm*n = t0 -4 no �9 Figure 1 
shows the angular dependence of  the perturbation of  the ion density 8n,----(n~--no)/no at a distance r = 2R o from the 
cylinder axis at the instant of  time t = R o / c  (the circle corresponds to the unperturbed density; outside the circle we have 
plotted 6n i > 0 as a function of  the angle 0, and inside the circle 6n i < 0). The shock wave is transferred to the body by 
the incoming plasma flow. The increase in densiW w h e n  0 ~ 2 corresponds to the Math cone. Behind the body a rarefied 
trail is formed in which the ions are focused around the axis of  symmetry 0 = 0. Qualitatively similar results were obtained 
in calculations using kinetic theory [6]. Figure 2 shows isolines of  the ion density ni(r, t); it can be seen that in front of  
the cylinder there is a shock wave with an oscillatory structure. 
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Fig. 3 

We will now consider the formation of  the shock wave using calculations carried out in the "curtailed" region 
R0~< r ~< 3R0, t ~< 0 ~. n,(00 = t) when there is slight viscosity v = 10 -2 and with the following parameters: [~=0.01, 

�9 q~0-----0.5 Te/e, 1' l /T,=0. i ,  u0=l .2  ee. Figure 3 shows the ion density proffie on the braking line 0 = 7r at subsequent instants 

of  time. Initially there is an increase in the ion density on the cylinder surface up to a value of ~ 20 n o (the instants of 
time tz----0A Ro/c,, and t==0,3 Bole a) . Then, when sufficient density has been stored on the surface of the body, ion pressure 
begins to have an effect, and "repels" the ions from the surface (instant of  time t3 = 0.4 Rolee), and it begins to leave the 
cylinder upwards along the flow of  the compression wave. Since the medium is dispersive, these perturbations gradually 
acquire an oscillatory form (instants of  time t4 = 0,6 Bole,, t5 = 0,9 Bole, and t6 = t . t5  Ro/c~) �9 When the dispersion 
parameter 13 is reduced considerable oscillations occur, the spatial scale of  which decreases in proportion to/31/2. 

When the potential of  the cylinder % is reduced there is an increase in the ion density on the surface of  the body, 
which occurs due to weakening of  the force on the part of  the electric field. 

When the nonisothermal characteristic of  the plasma Ti/T ~ is reduced from 0.1 to 0.01 the ion density on the 
cylinder surface increases from 32 n o to 224 n o for [~ = t0 -a, qD0 = 0.5 T,/e, and v = 10 -2 at the instant of  time t = Ro/c s- 

This is due to the fact that the "elasticity" of  the medium with respect to compression is determined by the temperature 
ratio Ti/Te, and when this ratio is reduced, the "elasticity" is reduced. In order for ion pressure to play a part, greater 
condensation on the surface of  the body is required. If  the velocity of  the leading flow u 0 is increased, there will also be 
an increase in the density of  the cylinder surface. 
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